
International Journal of Advanced Research in ISSN: 2349-2819

 Engineering Technology & Science
 Email: editor@ijarets.org Volume-7, Issue-6 June- 2020 www.ijarets.org

Copyright@ijarets.org Page 6

A SURVEY ON DATA ACCESS HISTORY CACHE BASED DATA PREFETCHING

MECHANISMS

Dr.Yee Yee Soe

Faculty of Computer System and Technologies,

 University of Computer Studies,

Hpa-an, Kayin State, Myanmar (Burma)

ABSTRACT:

Data prefetching is an essential process to span the growing performance gap between processor

and memory. While computing ability is increasing much faster than memory performance, it is

time to have a allocated cache to store data access histories and to serve prefetching to hide data

access latency effectively are proposed. A new cache structure, named Data Access History Cache

(DAHC), is proposed and studied its related prefetching mechanisms. The DAHC acts as a cache

for current reference facts instead of as a traditional cache for instructions or data. Theoretically, it

is effective supporting numerous familiar history-based prefetching algorithms, mainly adaptive

and aggressive approaches. The simulation experiments to prove DAHC design and DAHC-based

data prefetching methodologies and to indicate performance gains are supported. The DAHC

prepares a practical approach to getting data prefetching benefits and its associated prefetching

techniques are showed more effective than traditional approaches.

Keywords: data prefetching, memory performance, data access latency, prefetching techniques,

cache

INTRODUCTION:

While microprocessor performance improved by 52% a year until 2004 and has been increasing by

25%, memory speed is only increasing by roughly 9% each year [2]. The performance disparity

between processor and memory remains expanding. Deeper memory hierarchies have initiated to

span this gap [2]. Each memory level closer to the processor is smaller and faster than the following

lower level. The reason behind memory hierarchy design is the principle of data locality, which

states that programs tend to reuse data and instructions which are accessed recently (temporal

locality) or to access those items whose addresses are close to one another (spatial locality).When

applications absence locality by a working set size larger than the cache and/or non-contiguous

memory accesses, cache memories are ineffective.

When applications absence temporal or spatial locality, the data prefetching approach is suggested

to decrease the processor stall time. As the name specifies, data prefetching is a technique to fetch

data in advance. The essential idea is to see data referencing patterns, then to speculate following

references, and to fetch the predicted reference data closer to the processor before the processor

requests them. These works are finished that prefetching is a promising solution to reducing access

latency. The ultimate aim of data prefetching is to reduce access delay. However, the performance

gain depends on many components, such as prefetch coverage and accuracy. While computing

capability is quiet increasing with a much faster speed than memory performance, more aggressive

prefetching algorithms are wanted, which provide wider coverage and higher accuracy. In the

meantime, application features dominate referencing patterns. There is no single universal

prefetching algorithm satisfactory for all applications. It is beneficial to help adaptive algorithms

based on data access histories.

While the processor-memory performance space expands, application characteristics demand faster

access to data, and hardware technologies develop, it is measure to give one cache for prefetching

to completely harvest benefits of aggressive, adaptive and other data prefetching strategies have

argued. A dedicated prefetching cache structure, named Data Access History Cache (DAHC), and

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 7

presents data prefetching mechanisms is proposed to address this fundamental issue. Section 2

introduces the suggested DAHC design and methodology to serve multiple prefetching algorithms.

Section 3 discusses the simulation experiments and performance results in detail to prove DAHC

design and to demonstrate the potential performance improvement proposed by DAHC-based data

prefetching. Section 4 reviews related works and compares them with approaches. Finally, current

work is summarized and discussed future work in Section 5.

DATA ACCESS HISTORY CACHE:

The main purpose of the proposed DAHC is to path recent data access histories and support the

correlations from different perspectives. Those histories and connections are valuable information

for data prefetching, especially for aggressive and adaptive strategies. In existing work, only very

finite correlations are supported, which limits the prefetching accuracy, coverage, and

aggressiveness. Moreover, they only target a particular algorithm and have difficulty applying to

various applications. However, with advances of processor technologies and the rapidly growing

performance gap between processor unit and memory unit, it can be advantageous to occupy

computing power for a reduction in data access latency. With this plan, the dedicated a cache

(DAHC) for tracking data accesses and allowing the processing unit perform comprehensive data

prefetching are proposed. Therefore, processor stall time due to data accesses could be reduced and

the general system performance could be increased.

Design and Methodologies

The key design of the DAHC is that history-based prefetching algorithms must depend on

connections within either program counter stream or data address stream, or both. Therefore, the

DAHC is arranged to possess three tables such as one data access history table (DAH) and two

index tables (PC index table and address index table). The DAH table helps history features, while

the PC index table and the address index table carry correlations from the PC and data address

stream viewpoints respectively. A prefetching implementation can entry these two tables to get the

required correlations as necessary. Figure 1 illustrates the common design of DAHC and a high-

level perspective of how it can be applied to help different prefetching algorithms.

Figure 1. DAHC general design and high-level view

The comprehensive design of the DAHC is shown in “Figure 2” through an example. The DAH

table contains PC, PC_Pointer, Addr, Addr_Pointer and State fields. PC and Addr fields supply the

instruction address and data address separately. The PC_Pointer and Addr_Pointer point to an item

where the last access from the same instruction or the last access of the same address is discovered.

Therefore, PC_Pointer and Addr_Pointer relation are showed all accesses from the instruction

stream and data stream views. This design provides the basic mechanism to detect potential

correlations and access patterns. The State field keeps state machine status used in prefetching

algorithms. The different algorithms can occupy different bits of this field for supporting their own

states. The length of this field is dependently executed, and the usage is determined by prefetching

strategies. The PC index table possesses two fields, PC and Index.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 8

Figure 2. DAHC blueprint: PC index table, address index table and DAH table

The PC field constitutes the instruction address, which is a unique index in this table. The Index

field records the entry of the latest data access in the DAH table from the instruction keeped in the

equivalent PC field. This is the connection linking the PC index table and the DAH table. The

address index table is similarly defined. The DAH table expressed four data accesses, three of them

issued by instruction 403C20 (stored in the PC field) and one by instruction 4010D8 are shown in

Figure 2. The instruction 403C20 retrieved data at address 7FFF8000, 7FFF8004 and 7FFF800C in

sequence are showed in Addr and PC_Pointer fields. The instruction 403C20 and 4010D8 are also

keeped in the PC index table, and the corresponding Index field tracks the latest access from the

DAH table, which are entry 3 and 1 respectively. The address index table keeps each accessed

address and the latest entry and associates all the data accesses on the basis of the address stream as

shown in the bottom left of the “Figure 2”. Both PC index table and address index table can be

executed in a variety of methods including a fully associative structure and a set-associative

structure. Notice that DAHC design is common and it does not involve any restriction to the system

environment. It also tasks in CMP or SMT environment in multiple applications environment.

A snapshot of the DAHC after capturing more data accesses is showed in “Figure 3”. The PC index

table, address index table and DAH table are informed. The newest access entries for instruction

403C20 and 4010D8 are become index 9 and 8, individually. The address retrieved and the

corresponding entry is updated in the address index table. In this case, a compound structured stride

pattern of (4, 8, 4, 8) is noticed for instruction 403C20 after examining address 7FFF8000,

7FFF8004, 7FFF800C, 7FFF8010 and 7FFF8018. When 7FFF801C and 7FFF8024 are accessedas

predicted, the data at address 7FFF801C and 7FFF8024 can be prefetched to memory in progress to

avoid cache misses. Such a complex structured pattern is a common case of stride pattern.

However, the normal stride prefetching approach [3] is unable to notice it without the DAHC

support. This example shows an address connection between 100003F8 and 100003FA, which is

noticed and utilized for prediction in the Markov prefetching algorithm [7]. The next section

examines data prefetching methodologies based on the proposed DAHC.

Figure 3. DAHC snapshot

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 9

DAHC Approached Data Prefetching Mechanisms:

Stride Prefetching

Stride prefetching predicts following references based on strides of recent references. This

approach observes data accesses and detects constant stride access patterns. Stride prefetching is

usually executed with a Reference Prediction Table (RPT) [5] as shown in “Figure 4”. Reference

Prediction Table behaves as a different cache and holds data reference facts of new memory

instructions. Since stride prefetching includes following the contrast between two successive

entries and forecasting the next access based on the stride, it is simple to arrangement such an RPT

table for stride prefetching implementation. Every item in Reference Prediction Table (RPT) is the

instruction address, and it carries the previous access address, the stride and the state transition

information to foresee following accesses. The state transitions are exhibited in the right part of

“Figure 4”. When a sample enters steady state or remains at steady state, which indicates a constant

stride is initiated, a prefetch is activated. The prefetched data address is directly computed by

adding the stride to the previous address.

Although RPT is effective for expressing constant stride of data accesses, it has some restrictions.

The first limitation is that RPT only computes the stride between two successive accesses. It is

heavy to notice variable strides and impossible to find composite samples, such as a repeating

pattern of length n (e.g., 2, 4, 8, 2, 4, 8, …). Those complex patterns are usual in user-defined data

types. The second limitation is that RPT only tracks the last two accesses and forgets many useful

history references. Thus, the accuracy in detecting patterns is relatively small. Those issues are

addressed well in proposed DAHC structure. Since DAHC marks a large place of working

histories, it is capable of detecting changeable strides. Those full histories can also be used to

improve the accuracy of stride detection. Furthermore, DAHC builds detection of complex

structure patterns possible.

Stride prefetching can be executed with the DAHC as follows. When a data access occurs at

tracking level and is followed by attached DAHC part and related logic (see Section 3.1 for more

feature), the instruction address is explored for in the PC index table. If the instruction address does

not match any entry in the PC index table, which indicates it is the first time that this instruction

address is seen in present working window, no prefetching action is triggered. If the instruction

address matches one entry (it will match only one entry because the entries in index tables are

unique), the index pointer to traverse previous access addresses is followed and discovered whether

a strided pattern or a structured pattern is present. If a design is noticed, one or more data blocks are

prefetched to data cache or a separate prefetch cache. The prefetching degree and prefetching

distance can change depending on the real application. Finally, a new entry with this data access is

generated and placed into the DAH table. The PC index table and address index table are

modernized correspondingly. Note that the proposal related above is increased stride prefetching

with observation of variable and compound step samples. The standard stride prefetching [2] can be

applied by detecting constant strides only.

Figure 4. Reference prediction table and state transition diagram

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 10

Markov Prefetching

Markov prefetching is another traditional prefetching strategy. The Markov prefetching algorithm

illustrates a state transition diagram. The Markov prefetching algorithm describes a state transition

diagram through over data accesses. The probability of each transition from one state to another

state is computed and updated dynamically. The algorithm supports the future data accesses might

redo the histories. After a new data access is represented, the following references predicted from

the state transition diagram are prefetched in proceed.For example, the correlation table and state

transition diagram for the data access stream 7FFF8000, 1010FF00, 10B0C600, 7FFF8000,

7FF3CA00, 7FFF8000, 10B0C600 and 7FF3CA00 is shown in “Figure 5”.

Figure 5. Markov prefetching correlation table and state transition diagram

The standard Markov prefetching strategy tends all history accesses with the same weight. In

practice, the highest weight to the latest access is specified. This approach is necessary a mixture of

Markov model and LAST model [3]. The reason is that the next data access is most probably the

one that followedthe contemporary access in the nearest past. For example, if a sequence of

accesses to address A, B, A, C, D, A has had, then it is likely that the next access is C. With DAHC

support, Markov prefetching can be applied as follows. First, the data reference address is looked

for within the address index table. If the recently accessed address does not match any existing

entries, it is simply placed into the DAH table. The PC index and address index table are also

modernized.

If it matches an entry in the address index table, then it is inserted to the DAH table and walk

through the DAH table following the index and address pointer as shown in “Figure 6”. Each

address next to these entries is a prefetching applicant because each of this address is immediately

retrieved following the present access address in the past. The different prefetching level and

prefetching interval can be helped depending on the actual implementation similar as in stride

prefetching. If the prefetching degree is greater than one, multiple continuous can get and data

addresses following these entries are overtaken. The prefetching distance is also grown to init iate

multiple visits. If a new data access address is 10B0C600, then a new entry is put into the DAH

table at index 7, and the address index table is updated in resuming with the foregoing example as

shown in “Figure 6”. After the DAH table following index 7, pointer 5 and pointer 2 are

accompanied, statistics at address 7FF3CA00 and 7FFF8000 are prefetched candidates if

prefetching stage as one and prefetching distance as two are set. The Markov prefetching builds

state transition based on data addresses. It does not require to work the state field.

Figure 6. Markov prefetching with DAHC

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 11

Aggressive Prefetching Strategies:

Since the DAHC supports new accesses in particular and the connection among them, it is more

robust than aiding conventional prefetching approaches such as stride prefetching and Markov

prefetching. It can carry many further history-based prefetching strategies like more aggressive

prefetching algorithms. It is an easy job to execute aggressive strategies with the DAHC because

the DAHC is plotted to support aggressive strategies naturally. The Multi-Level Difference Table

(MLDT) prediction algorithm is a typical aggressive strategy [9]. This prediction strategy forms a

difference table of depth d of new data accesses. Figure 7 indicates an example of the difference

table. If a constant difference can be initiated in the first depth, which indicates a constant stride is

started among data access reports, then the kthsubsequent access from access Aris predicted as Ar+

k= Ar+ k×B, where Bis the constant difference among accesses. Some polynomial formula is used

to forecast the later access for general cases. For example, if a constant difference is found in the

third depth, the future access is predicted as equation (1).

 Ar+k=Ar+ k×Br-1+
𝑘×(𝑘+1)

2
×Cr-2+MkD (1)

 Here, Mk=
𝑘

6
×(k-1) ×(k-2)+k

2
, where k=1,2,…

Figure 7. Example of difference table

MLDT strategy is near to existing stride prefetching but is further aggressive as it looks references

up to depth d. The stride prefetching is the special occurrence where depth equals one.

Additionally, this technique discovers sets of repeating differences and ultimately finds the true

pattern in the accessing structures with variable stride data access patterns. For changeable stride

patterns, MLDT looks for uniformly among data references by occuring a deeper difference table.

It can also be expanded to find repeating sets of strides (e.g. 4, 8, 4, 4, 8, 4, 4, 8, 4…) at each

quantity of difference table. DAHC gives an implementation approach for the MLDT prefetching

algorithm. First, when a data access is seen at tracking level, this access’s instruction address is

examined with the PC index table. The DAH, PC index and address index tables are updated as

necessary. Second, the index pointer is followed and walked through the DAH table to find out

previous accesses. These workings are similar as in stride prefetching case. The difference between

MLDT prefetching and stride prefetching is that multiple level differences are computed to notice if

any constant stride, variable stride or complex structure pattern exists in each level, which conveys

a stride prefetching at each stride difference level has performed. If a pattern is detected at some

level, it is stopped going to further levels. If a pattern is continued to the further level, the strides of

next level are calculated and they become the strides are dealed with. Therefore, it is always tasked

with one level of stride similarly as in the normal stride prefetching case. When the MLDT

prefetching with the DAHC is done, where a compound order fashion (4, 8, 4, 8) is detected as an

example shown in “Figure 3”.

Implementation Issues:

The DAHC is simple and a successful prototype design of a prefetching-dedicated structure.It is a

cache for data access information compared with standard cache for instructions or data. The

proposed DAHC can be placed at separate levels for different desired data prefetching. For

example, it can be used to track all accesses to first level cache and to serve as a L1 cache

prefetcher. It can also be set at the second level cache and serves as a L2 cache prefetcher only. The

simple design makes the application uncomplicated. The hardware performance of the DAHC

should be a specific physical cache, such as victim cache or trace cache. The PC index table and the

address index table can be executed with any connectivity such as 2-way or 4-way. Since the index

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 12

tables usually have less correct entries than the DAH table, it is unlikely that some entry is replaced

due to a conflict miss. Even if a disagreement miss occurs, it does not affect the correctness except

discarding some access history. The DAH table can be applied with a special structure where

history information can be stored row by row and each row can be located by using its index.

The logic to fill/update the DAHC occurs the cache controller. The cache controller catches data

accesses at the detected quantity and remains a copy of the entry information in the DAHC. If the

DAH table is full, a victim entry will be selected and ejected out. The PC index table and the

address index table are also updated for consistency. The needed DAHC size for normal

applications’ operating set is not important. These experiments are simulated DAHC functionalities

and the conclusion is that DAHC is achievable in terms of hardware implementation.

SIMULATION AND PERFORMANCEANALYSIS:

The simulation experiments to study the feasibility of the proposed generic prefetching-dedicated

cache are conducted DAHC for various prefetching strategies. Stride prefetching, Markov

prefetching and Multi-Level Difference Table aggressive prefetching algorithms are chosen for

simulation. This section surveys simulation characteristics of DAHC based data prefetching and

introduces the analysis results.

Simulation Methodology:

The SimpleScalar simulator [1] is incorporated with data prefetching functionality to show how

separate prefetching algorithms can be executed with the DAHC. The Simple Scalar tool set gives a

detailed and high-performance simulation of modern processors. It gains binaries assembled for

SimpleScalar construction as input and reproduces their execution on supplied processor

simulators. It has some different execution-driven processor simulators, varying from extremely

fast functional simulator to a detailed and out-of-order issue simulator, called the sim-outorder

simulator.

The sim-outorder simulator is selected for experiments. Figure 8 shows modified SimpleScalar

simulator architecture. This is initiated two new modules: DAHC module and Prefetcher

module.The DAHC module is simulated the functionality of the proposed DAHC. Monitored data

accesses are keeped in the DAHC. The DAHC cache controller is responsible for renovating all

three tables. The Prefetcher module is applied the prefetching logic and different prefetching

algorithms.

In this module, a prefetch queue, near to the prepare queue of the actual sim-outorder simulator, is

produced to keep prefetch instructions.Prefetch instructions are similar to load instructions with a

few irregularity. The first exception is that the essential address of each prefetch instruction is

calculated based on a data entry pattern and prefetching strategy instead of determining the address

using an integer-add functional unit. Another case is that when prefetch instructions go through the

pipeline, it is not necessary to walk through writeback and do stages, and prefetch instructions do

not cause any exceptions (prefetch instructions are silent). These similarities and differences allow

the guidelines to handle prefetch instructions. The application of prefetching strategies based on the

DAHC follows the discussion in part 2.2. Moreover, these two new modules, some existing

modules are increased to include the DAHC and data prefetching functionality.

Figure 8. Enhanced SimpleScalar simulator

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 13

First, the simulator core module is reviewed to support the DAHC and Prefetcher modules. The

pipeline is modified to experience prefetching logic. The first improvement is each ready-to-issue

load instruction is pathed to DAHC after the memory scheduler examines data dependencies. The

prefetcher performs access pattern detection based on prefetching algorithms and builds prediction

for future data accesses once a pattern is detected. Prefetch instructions are enqueued to prefetch

queue. Another improvement is in instruction issue phase. During this phase, when available issue

bandwidth has, i.e. if there is idle bandwidth after issuing common instructions, the prefetch queue

is walked through and prefetch instructions are assigned with functional units to fetch the predicted

data to data cache. Second, the memory module is modified to begin a prefetch command to the

memory component in addition to a load and a store command. The cache module is increased with

prefetch access handlers. Prefetch accesses can be holded similarly to load instructions except

prefetch accesses do not cause any exceptions. Some further statistics counters are added for

measuring the effectiveness of prefetching.

Experimental Setup:

The Alpha-ISA has used and configured the simulator as a 4-way issue and 256-entry RUU

processor. The level one instruction cache and data cache has split. L1 data cache as 32KB and 2-

ways with 64B cache line size have configured. The latency is 2 cycles. L2 unified cache has

configured as 1MB, 4-way with 64B cache line size. The latency of L2 cache has 12 CPU cycles.

The DAHC has placed as 1024 entries, and the replacement algorithm is FIFO. Both index tables

are simulated with 4-ways linked structures. Each DAHC access, such as a lookup within index

tables, costs one CPU cycle have assumed. This has been a reasonable acceptance for a small 4-

way cache. A traversal within DAH table costs one cycle is also assumed. If a prefetching

algorithm requires crossing many sites to force predictions, it absorbs multiple patterns. The

prefetch queue is set as 512 entries. “Table 1” shows the configuration of the simulator.

Table 1. Simulator configuration

Experimental Results:

Matrix Multiplication Simulation

The demonstrations to experiment the enhanced SimpleScalar simulator with DAHC based data

prefetching functionality are arranged. The prefetching strategy is set as the MLDT algorithm.

Matrix multiplication is chosen as the application because it is widely used in scientific computing

and the correctness of its output results is easy to confirm. The size of matrices is set as 200× 200.

These results are randomly generated the input, conducted simulation and then compared the output

result with standard output to verify the correctness of the enhanced simulator. The correctness is

also showed through checking the number of instructions (normal instructions) supplied by the

original and the enhanced version. The simulation time is the passed time for simulation (how

much time the simulator spent in simulating). The consequence confirm that the enhanced

SimpleScalar simulator operated accurately, and cache misses are decreased significantly through

DAHC-based data prefetching.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 14

Table 2. Simulation results for matrix multiplication

SPEC CPU2000 Benchmark Simulation:

The several sets of SPEC CPU2000 benchmark [8] simulation are conducted for performance

evaluation. Twenty-one of the total twenty-six benchmarks are successfully tested in experiments.

The more five standards (apsi, facerec, fma3d, perlbmk and wupwise) had difficulties operating

down the SimpleScalar simulator (even in the original simulator) and had not concluded the

experiment.

The select of the original position of tests had to differentiate the execution gain of conventional

RPT-based stride prefetching approach and enhanced DAHC-based stride prefetching approach.

Figure 9 shows the experimental results. The initial bar in each experiment means the level-one

cache miss rate of the bottom instance in which no prefetching is executed. The second and the

third stand represent the miss rate in the case of conventional stride prefetching with RPT and

enhanced stride prefetching with DAHC individually.The conventional approach reduced miss

rates, and the enhanced approach reduced miss rates further are shown in “Figure 9”. The rationale

comes from that, with DAHC support, enhanced stride prefetching is able to detect complex

structured patterns, and then the prediction accuracy is improved through observing more histories.

In contrast, numerous key and helpful records are not observed and not fully utilized in traditional

stride prefetching based on RPT.

Figure 9. Stride prefetching with RPT vs. stride prefetching with DAHC

The comparison L1 cache miss rates of all tested SPEC CPU2000 benchmarks are shown in

“Figure 10” for the base case and three prefetching cases. This set of experiments are exhibited that

DAHC-based data prefetching worked completely and the cache miss rates are decreased clearly in

most instances. Both stride and aggressive MLDT algorithms reduced a large ratio of miss rates

among the three prefetching strategies. The MLDT algorithm had slightly better than stride

prefetching because it explores more levels to discover patterns among accesses. The Markov

prefetching is performed poor than stride and MLDT algorithms in most cases. One possible cause

is that Markov prefetching needs a large set of conditions to distinguish the expectation of

conversion among accesses effectively. If the state diagram space is restricted, it is smart for the

Markov prefetching to warranty the accuracy and coverage.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 15

Figure 10. L1 cache miss rate of SPEC 2000 benchmarks

The L1 cache replacement charge in these experiments is shown in “Figure 11”. Cache

contamination is considered a side effect of prefetching. An incorrect prediction refers a useless

data block to cache and might replace useful data. With DAHC support, the prefetching accuracy

grows by taking advantage of all available history information. The replacement rate only expanded

moderately in DAHC-supported data prefetching is seen in “Figure 11”.

Figure 11. L1 cache replacement rate of SPEC CPU2000 benchmarks

The overall IPC (Instructions per Cycle) improvement preferred by three prefetching strategies:

stride, Markov and MLDT prefetching based on DAHC are shown in “Figure 12”. The

experimental results demonstrated that the IPC values are improved greatly in most cases. The

figure also reveals that even though MLDT attained the best cache miss rate depletion in nearly all

instances, the IPC improvement is not always best. The MLDT in the applu, crafty, gcc, gzip, lucas,

mcf, parser, swim, twolf and vpr benchmarks are outperformed the stride prefetching. This is

because MLDT requires more prefetching overhead for its aggressiveness due to more DAHC

accesses. When the general system performance benefit is considered in IPC value, it paid for its

further above compared to stride prefetching.The Markov strategy outperformed the more two in

the bzip2, eon and vortex benchmarks are shown in “Figure 12” as in another interesting reality.

These facts established that individual strategies are wanted for different applications to get the best

prefetching benefits. It is certain to help diverse algorithms and adapt to them dynamically based on

clear application characteristics, and the proposed DAHC provides the key structure support for

adaptive strategies. Algorithm creaters can use DAHC functionalities to come up with and

implement adaptive algorithms.

Figure 12. IPC value of SPEC CPU2000 benchmarks simulation

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 16

RELATED WORK:

Data prefetching is often classified as software prefetching and hardware prefetching. Software

prefetching tools prefetch instructions to the source code either by a programmer or by a complier

during the optimization period.

Hardware-based prefetching does not need modifications to binary or source code and can directly

benefit living binary code. There is no require for programmer or compiler’s intervention. The

hardware prefetching approaches include sequential prefetching, stride prefetching and Markov

prefetching. Sequential prefetching [6] fetches successive cache blocks by proceeding advantage

of locality. The one-block-lookahead (OBL) approach automatically prefetches the following block

when an entry of a block is initiated. Although, the restriction of this approach is that the prefetch

may not be begun enough prior to processor’s request for the data to avoid a processor stall. To

solve this supply, a difference of OBL prefetching, which fetches k blocks (called prefetching

degree) instead of one block, is suggested. Another form is called adaptive sequential prefetching,

which differs prefetching degree k based on the prefetching efficiency. The prefetching efficiency

is a metric determined to characterize a program’s spatial locality at runtime. The stride prefetching

approach [3] notices the pattern among strides of past accesses and predicts future accesses.

The different strategies are suggested based on stride prefetching and these strategies support a

reference prediction table (RPT) to support path of current data accesses. RPT provides a actual

approach to implement stride prefetching, but the limitation is that only constant strides are

noticeable. To express repetitiveness in data reference addresses, Markov prefetching [7] is

proposed. This strategy supposes the history might repeat itself among data accesses and build a

state transition diagram with states denoting an accessed data block. The probability of each state

transition is keeped so that the most probable predicted data are prefetched in advance and the least

probable predicted data references can be dropped from prefetching.

The data push server architecture utilizes unconnected processing unit such as a separate core to

behaviour heuristic prefetching. The memory-side prefetching approach works a memory processor

occupying within main memory to see data access histories and prefetch data proactively upon

prediction.It is usually differentiated as push based prefetching from traditional pull based

prefetching.

The effectiveness of hardware prefetching mostly depends on the accuracy of prediction strategies

by the absence of the interest of programmer or compiler hints. Incorrect prediction prefers useless

blocks into cache, consumes memory bandwidth and may cause cache pollution. The hardware

prefetching strategies should be more aggressive to increase prefetching accuracy and coverage.On

the other hand, it is wanted that data prefetching could help various algorithms and construct

dynamic selections because patterns are determined by application attribute and different

prefetching algorithms are required for mixed applications. The proposed generic and prefetching-

dedicated DAHC cache is designed to decide these issues.

The IP prefetcher is a RPT-like prefetcher. Thus, it suffers the constraint that it only performs for

continuous stride prefetching. Nevertheless, the Intel IP prefetcher supplies the helpful guidelines

in implementing the DAHC in hardware.

CONCLUSIONS AND FUTURE WORK:

The data access delay is a severe impact on overall system performance because of memory

performance lags far behind processor speed. This study is targeted to determine this issue through

completely exploiting data prefetching benefits with a generic and prefetching-dedicated cache.

The main contributions in this learning are includedthe introducing a novel concept of a

prefetching-dedicated cache considering both hardware technologies and application feature trends,

providing the design of a prefetching cache structure DAHC and simulating its functionalities with

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819

www.ijarets.org Volume-7, Issue-6 June- 2020 Email- editor@ijarets.org

Copyright@ijarets.org Page 17

an enhanced SimpleScalar simulator and presenting DAHC-associated data prefetching

methodologies and demonstrating its support for prefetching algorithms with three representative

samples, stride prefetching, Markov prefetching and an aggressive prefetching algorithm, MLDT

algorithm. The simulation experiments showed that the DAHC is feasible and that DAHC-based

data prefetching achieved considerable cache miss rate reductions and IPC improvements.

The power of the DAHC in supporting various prefetching algorithms is demonstrated in this study.

In future work, the extend of this work has planned in various aspects. One of them has modified to

different prediction algorithms based on the data requirements of applications and maked such

decisions dynamically at runtime. The efficiency criteria for prefetching algorithms has defined and

provided feedback for different algorithms and then to choose the best algorithm at runtime.

Another future works will be to devise even more comprehensive prefetching strategies to further

explore the DAHC’s potentials.

REFERENCES
1. D.C. Burger, T.M. Austin and S. Bennett.Evaluating Future Microprocessors: the SimpleScalar Tool Set.

UniversityofWisconsin-Madison Computer Sciences Technical Report 1308, July, 1996.

2. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. The 4th edition, Morgan

Kaufmann, 2006.

3. T.F. Chen and J.L. Baer.Effective Hardware-BasedData Prefetching for High Performance

Processors.IEEETrans.Computers, pp. 609-623, 1995.

4. J. Doweck.Inside Intel Core Microarchitecture and Smart Memory Access.Intel White Paper, 2006.

5. P. Dinda, D. O'Hallaron. Host Load Prediction Using Linear Models. Cluster Computing, Volume 3, Number 4,

2000.
6. F. Dahlgren, M. Dubois, and P. Stenström.Sequential Hardware Prefetching in Shared-

MemoryMultiprocessors.IEEE Trans.onParallelandDistributedSystems,Volume6,Issue 7, pp.733-746, 1995.

7. D. Joseph and D. Grunwald.Prefetching Using Markov Predictors.In Proceedings of the 25th Annual

Symposium on Computer Architecture, Denver-Colorado, pp 252-263, June 2-4 1998.

8. Standard Performance Evaluation Corporation, SPEC Benchmarks, http://www.spec.org/

9. X.H. Sun, S. Byna and Y. Chen.Improving Data Access Performance with Server Push Architecture.In Proc. of

the NSF Next Generation Software Program Workshopin IPDPS’07, 2007.

http://www.spec.org/

